4.4 Review

Intrinsically unstructured proteins evolve by repeat expansion

期刊

BIOESSAYS
卷 25, 期 9, 页码 847-855

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/bies.10324

关键词

-

向作者/读者索取更多资源

The proportion of the genome encoding intrinsically unstructured proteins increases with the complexity of organisms, which demands specific mechanism(s) for generating novel genetic material of this sort. Here it is suggested that one such mechanism is the expansion of internal repeat regions, i.e., coding micro- and minisatellites. An analysis of 126 known unstructured sequences shows the preponderance of repeats: the percentage of proteins with tandemly repeated short segments is much higher in this class (39%) than earlier reported for all Swiss-Prot (14%), yeast (18%) or human (28%) proteins. Furthermore, prime examples, such as salivary proline-rich proteins, titin, eukaryotic RNA polymerase II, the prion protein and several others, demonstrate that the repetitive segments carry fundamental function in these proteins. In addition, their repeat numbers show functionally significant interspecies variation and polymorphism, which underlines that these regions have been shaped by intense evolutionary activity. In all, the major point of this paper is that the genetic instability of repetitive regions combined with the structurally and functionally permissive nature of unstructured proteins has powered the extension and possible functional expansion of this newly recognized proteinclass. (C) 2003 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据