4.7 Article

Unique and combinatorial functions of Fgf3 and Fgf8 during zebrafish forebrain development

期刊

DEVELOPMENT
卷 130, 期 18, 页码 4337-4349

出版社

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.00660

关键词

FGF; zebrafish; forebrain; telencephalon; diencephalon; thalamus; commissure; zona limitans intrathalamica

向作者/读者索取更多资源

Complex spatiotemporal expression patterns of fgf3 and fgf8 within the developing zebrafish forebrain suggest their involvement in its regionalisation and early development. These factors have unique and combinatorial roles during development of more posterior brain regions, and here we report similar findings for the developing forebrain. We show that Fgf8 and Fgf3 regulate different aspects of telencephalic development, and that Fgf3 alone is required for the expression of several telencephalic markers. Within the diencephalon, Fgf3 and Fgf8 act synergistically to pattern the ventral thalamus, and are implicated in the regulation of optic stalk formation, whereas loss of Fgf3 alone results in defects in ZLI development. Forebrain commissure formation was abnormal in the absence of either Fgf3 or Fgf8; however, most severe defects were observed in the absence of both. Defects were observed in patterning of both the midline territory, within which the commissures normally form, and neuronal populations, whose axons comprise the commissures. Analysis of embryos treated with an FGFR inhibitor suggests that continuous FGF signalling is required from gastrulation stages for normal forebrain patterning, and identifies additional requirements for FGFR activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据