4.4 Review

Protein aggregation in recombinant bacteria:: biological role of inclusion bodies

期刊

BIOTECHNOLOGY LETTERS
卷 25, 期 17, 页码 1385-1395

出版社

SPRINGER
DOI: 10.1023/A:1025024104862

关键词

cellular stress; chaperones; Escherichia coli; inclusion bodies; protein aggregation; recombinant protein

向作者/读者索取更多资源

Protein aggregation is an ordinary consequence of thermal stress. In recombinant bacteria, the over-expression of plasmid-encoded genes triggers transcription of heat-shock genes and other stress responses and often results in the aggregation of the encoded protein as inclusion bodies. The formation of these deposits represents a major obstacle for the production of biologically active polypeptides and restricts the spectrum of protein products being available for the industrial-biomedical market. Inclusion body formation was formerly considered to occur passively by the irretrievable deposition of partially-folded intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria occurs as a reversible process deeply integrated in the cell mechanisms for coping with thermal stress, and that inclusion bodies are structurally dynamic structures. Inclusion body formation might actually be supported by the cellular machinery that when operated under specific stress conditions, transiently stores misfolded polypeptides until they could be further processed: either refolded or proteolysed. A better understanding of protein aggregation in cell physiology could allow not only inclusion body formation to be minimized more efficiently for a higher soluble yield, but also to comprehend in detail the intricacy of cell mechanisms committed to handling the misfolding danger.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据