4.5 Article

Thermal noise and correlations in photon detection

期刊

APPLIED OPTICS
卷 42, 期 25, 页码 4989-5008

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.42.004989

关键词

-

类别

向作者/读者索取更多资源

The standard expressions for the noise that is due to photon fluctuations in thermal background radiation typically apply only for a single detector and are often strictly valid only for single-mode illumination. I describe a technique for rigorously calculating thermal photon noise, which allows for arbitrary numbers of optical inputs and detectors, multiple-mode illumination, and both internal and external noise sources. Several simple examples are given, and a general result is obtained for multimode detectors. The formalism uses scattering matrices, noise correlation matrices, and some fundamentals of quantum optics. The covariance matrix of the photon noise at the detector outputs is calculated and includes the Hanbury Brown and Twiss photon-bunching correlations. These correlations can be of crucial importance, and they explain why instruments such as autocorrelation spectrometers and pairwise-combined interferometers are competitive (and indeed common) at radio wavelengths but have a sensitivity disadvantage at optical wavelengths. The case of autocorrelation spectrometers is studied in detail. (C) 2003 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据