4.8 Article

Complexity of inducible nitric oxide synthase - Cellular source determines benefit versus toxicity

期刊

CIRCULATION
卷 108, 期 9, 页码 1107-1112

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.CIR.0000086321.04702.AC

关键词

nitric oxide; myocytes; inflammation; leukocytes

向作者/读者索取更多资源

Background-Inducible nitric oxide synthase (iNOS) has been shown to have both beneficial and detrimental effects in sepsis. We focused on a single organ, the heart, and used 2 distinct cell types that express iNOS-the cardiac myocyte and the infiltrating neutrophil-to study the distinct functional effects of iNOS derived from heterogeneous cellular sources. Methods and Results-In the first series of experiments, extravascular neutrophils were exposed to isolated single endotoxemic cardiac myocytes. Adhesion of wild-type neutrophils caused a rapid decrease in myocyte shortening and a concomitant increase in neutrophil-derived intracellular oxidative stress within the myocytes that was not observed with neutrophils from iNOS-deficient animals. We previously demonstrated that neutrophil-derived superoxide was essential for myocyte dysfunction; however, superoxide production was not compromised in the iNOS-deficient neutrophils. Because both superoxide and NO were essential for the neutrophil dysfunction, we probed for but could not detect any peroxynitrite assessed by detection of nitrotyrosine. There was a significant increase in length shortening in response to beta-adrenergic stimulation of wild-type myocytes. Surprisingly, myocyte iNOS activity was essential rather than detrimental for the development of beta-adrenergic receptor-mediated increases in shortening in endotoxemic iNOS-deficient myocytes. Conclusions-These results demonstrate that iNOS, when expressed in isolated cardiac myocytes, can regulate the response to beta-adrenergic stimulation during sepsis. However, as the neutrophils migrate in proximity to myocytes, iNOS now becomes essential for the ability of neutrophils to damage myocytes. These findings demonstrate that cellular source strongly modulates the beneficial and detrimental effect of iNOS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据