4.8 Article

Entangled quantum state of magnetic dipoles

期刊

NATURE
卷 425, 期 6953, 页码 48-51

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature01888

关键词

-

向作者/读者索取更多资源

Free magnetic moments usually manifest themselves in Curie laws, where weak external magnetic fields produce magnetizations that vary as the reciprocal of the temperature (1/T). For a variety of materials that do not display static magnetism, including doped semiconductors(1) and certain rare-earth intermetallics(2), the 1/T law is replaced by a power law T(-alpha) with alpha < 1. Here we show that a much simpler material system-namely, the insulating magnetic salt LiHo(x)Y(1-x)F(4)-can also display such a power law. Moreover, by comparing the results of numerical simulations of this system with susceptibility and specific-heat data(3), we show that both energy-level splitting and quantum entanglement are crucial to describing its behaviour. The second of these quantum mechanical effects-entanglement, where the wavefunction of a system with several degrees of freedom cannot be written as a product of wavefunctions for each degree of freedom-becomes visible for remarkably small tunnelling terms, and is activated well before tunnelling has visible effects on the spectrum. This finding is significant because it shows that entanglement, rather than energy-level redistribution, can underlie the magnetic behaviour of a simple insulating quantum spin system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据