4.5 Review

Acetate metabolism and its regulation in Corynebacterium glutamicum

期刊

JOURNAL OF BIOTECHNOLOGY
卷 104, 期 1-3, 页码 99-122

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-1656(03)00167-6

关键词

Corynebacterium glutamicum; acetate metabolism; acetate activation; glyoxylate cycle; carbon flux regulation; expression profiling

向作者/读者索取更多资源

The amino acid producing Corynebacterium glutamicum grows aerobically on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. Among the substrates metabolized are glucose and acetate which both can also serve as substrates for amino acid production. Based on biochemical, genetic and regulatory studies and on quantitative determination of metabolic fluxes during utilization of acetate and/or glucose, this review summarizes the present knowledge on the different steps of the fundamental pathways of acetate utilization in C glutamicum, namely, on acetate transport, acetate activation, tricarboxylic acid (TCA) cycle, glyoxylate cycle and gluconeogenesis. It becomes evident that, although the pathways of acetate utilization follow the same theme in many bacteria, important biochemical, genetic and regulatory peculiarities exist in C glutamicum. Recent genome wide and comparative expression analyses in C glutamicum cells grown on glucose and on acetate substantiated previously identified transcriptional regulation of acetate activating enzymes and of glyoxylate cycle enzymes. Additionally, a variety of genes obviously also under transcriptional control in response to the presence or absence of acetate in the growth medium were uncovered. These genes, thus also belonging to the acetate stimulon of C glutamicum, include genes coding for TCA cycle enzymes (e.g. aconitase and succinate dehydrogenase), for gluconeogenesis (phosphoenolpyruvate carboxykinase), for glycolysis (pyruvate dehydrogenase El) and genes coding for proteins with hitherto unknown function. Although the basic mechanism of transcriptional regulation of the enzymes involved in acetate metabolism is not yet understood, some recent findings led to a better understanding of the adaptation of C glutamicum to acetate at the molecular level. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据