4.6 Article

High glucose-suppressed endothelin-1 Ca2+ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 36, 页码 33951-33962

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M302823200

关键词

-

向作者/读者索取更多资源

High glucose (HG) is the underlying factor contributing to long term complications of diabetes mellitus. The molecular mechanisms transforming the glomerular mesangial cell phenotype to cause nephropathy including diacylglycerol-sensitive protein kinase C (PKC) are still being defined. Reactive oxygen species (ROS) have been postulated as a unifying mechanism for HG-induced complications. We hypothesized that in HG an interaction between ROS generation, from NADPH oxidase, and PKC suppresses mesangial Ca2+ signaling in response to endothelin-1 (ET-1). In primary rat mesangial cells, growth-arrested (48 h) in 5.6 mM (NG) or 30 mM (HG) glucose, the total cell peak [Ca2+](i) response to ET-1 (50 nM) was 630 +/- 102 nM in NG and was reduced to 159 +/- 15 nM in HG, measured by confocal imaging. Inhibition of PKC with phorbol ester down-regulation in HG normalized the ET-1-stimulated [Ca2+](i) response to 541 +/- 74 nM. Conversely, an inhibitory peptide specific for PKC-zeta did not alter Ca2+ signaling in HG. Furthermore, overexpression of conventional PKC-beta or novel PKC-delta in NG diminished the [Ca2+](i) response to ET-1, reflecting the condition observed in HG. Likewise, catalase or p47(phox) antisense oligonucleotide normalized the [Ca2+](i) response to ET-1 in HG to 521 +/- 58 nM and 514 +/- 48 nM, respectively. Pretreatment with carbonyl cyanide m-chlorophenylhydrazone or rotenone did not restore Ca2+ signaling in HG. Detection of increased intracellular ROS in HG by dichlorofluorescein was inhibited by catalase, diphenyleneiodonium, or p47(phox) antisense oligonucleotide. HG increased p47(phox) mRNA by 1.7 +/- 0.1-fold as measured by reverse transcriptase-PCR. In NG, H2O2 increased membrane-enriched PKC-beta and -delta, suggesting activation of these isozymes. HG-enhanced immunoreactivity of PKC-delta visualized by confocal imaging was attenuated by diphenyleneiodium chloride. Thus, mesangial cell [Ca2+](i) signaling in response to ET-1 in HG is attenuated through an interaction mechanism between NADPH oxidase ROS production and diacylglycerol-sensitive PKC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据