4.6 Article

C5a receptor oligomerization - I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein-coupled receptor

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 37, 页码 35345-35353

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M305606200

关键词

-

资金

  1. NIGMS NIH HHS [GM63720-01] Funding Source: Medline

向作者/读者索取更多资源

G protein-coupled receptors (GPCRs), stimulated by hormones and sensory stimuli, act as molecular switches to relay activation to heterotrimeric G proteins. Recent studies suggest that GPCRs form dimeric or oligomeric structures, a phenomenon that has long been established for growth factor receptors. The elucidation of the domains of GPCRs that mediate receptor association is of critical importance for understanding the function of GPCR oligomers. Using a disulfide-trapping strategy to probe the intermolecular contact surfaces, we demonstrate cross-linking of C5a receptors in membranes prepared from both human neutrophils and stably transfected mammalian cells that is mediated by a cysteine in the second intracellular loop. To explore other surfaces that might be involved in the oligomerization of C5a receptors, we constructed receptors with individual cysteines in other intracellular regions. C5a receptors with a cysteine in the first intracellular loop or the carboxyl terminus displayed the fastest kinetics of dimer formation, whereas an intracellular loop 3 cysteine displayed minimal cross-linking. Since the rate of disulfide trapping reflects the proximity of sulfhydryl groups, assuming similar accessibility and flexibility, these results imply a symmetric dimer interface that may involve either transmembrane helices 1 and 2 or helix 4. However, neither model can account for the ability of the native cysteine in the second intracellular loop to mediate efficient cross-linking. Based on these observations, we propose that C5a receptors form higher order oligomers (i.e. tetramers) or clusters in the membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据