4.6 Article

Complex dynamics of tumors:: modeling an emerging brain tumor system with coupled reaction-diffusion equations

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-4371(03)00391-1

关键词

-

向作者/读者索取更多资源

One of the hallmarks of malignant brain tumors is their extensive tissue invasion, which represents a major obstacle for effective treatment. In this paper we specifically model the invasive behavior of such tumors viewed as complex dynamic biosystems. Based on the spatio-temporal patterns seen in an experimental setting for multicellular brain tumor spheroids we propose an invasion-guiding, dynamical profile of heterotype and homotype attractor substances. We present a novel theoretical and numerical framework for a mathematical tumor model composed of a set of coupled reaction-diffusion equations describing chemotactic and haptotactic cell behavior. In particular, our continuum model simulates tumor cell motility guided by the principle of least resistance, most permission and highest attraction. Preliminary numerical results indicate that the computational algorithm is capable of reproducing patterns similar to the experimentally observed behavior. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据