4.6 Article

Theory of single atom manipulation with a scanning probe tip: Force signatures, constant-height, and constant-force scans

期刊

PHYSICAL REVIEW B
卷 68, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.115427

关键词

-

向作者/读者索取更多资源

We report theoretical results predicting the atomic manipulation of a silver atom on a Si(001) surface by a scanning probe tip, and providing insight into the manipulation phenomena. A molecular mechanics technique has been used, the system being described by a quantum chemistry method for the short-range interactions and an analytical model for the long-range ones. Taking into account several shapes, orientations, and chemical natures of the scanning tip, we observed four different ways to manipulate the deposited atom in a constant-height mode. In particular, the manipulation is predicted to be possible with a Si(111) tip for different tip shapes and adatom locations on the silicon surface. The calculation of the forces during the manipulation revealed that specific variations can be associated with each kind of process. These force signatures, such as the tip height signatures observed in scanning tunneling microscope experiments, could be used to deduce the process involved in an experiment. Finally, we present preliminary results about the manipulation in constant-force mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据