4.6 Article

Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite.: A study linking MD simulations with the Maxwell-Stefan formulation

期刊

LANGMUIR
卷 19, 期 19, 页码 7977-7988

出版社

AMER CHEMICAL SOC
DOI: 10.1021/la034759a

关键词

-

向作者/读者索取更多资源

Correlation effects in diffusion of CH4 and CF4 in MFI zeolite have been investigated with the help of molecular dynamics (MD) simulations and the Maxwell-Stefan (M-S) formulation. For single-component diffusion, the correlations are captured by the self-exchange coefficient D-ii(corr); in the published literature this coefficient has been assumed to be equal to the single-component M-S diffusivity, D-i. A detailed analysis of single-component diffusivity data from MD, along with published kinetic Monte Carlo (KMC) simulations, reveals that D-ii(corr)/D-i is a decreasing function of the molecular loading, depends on the guest-host combination, and is affected by intermolecular repulsion (attraction) forces. A comparison of published KMC simulations for diffusion of various molecules in MFI, with those of primitive square and cubic lattices, shows that the self-exchange coefficient increases with increasing connectivity. Correlations in CH4/CF4 binary mixtures are described by the binary exchange coefficient D-12(corr); this exchange coefficient has been examined using Onsager transport coefficients computed from MD simulations. Analysis of the MD data leads to the development of a logarithmic interpolation formula to relate D-12(corr) with the self- exchange coefficient D-ii(corr) of the constituents. The suggested procedure for estimation of D-12(corr) is validated by comparison with MD simulations of the Onsager and Fick transport coefficients for a variety of loadings and compositions. Our studies show that a combination of the M-S formulation and the ideal adsorbed solution theory allows good predictions of binary mixture transport on the basis of only pure component diffusion and sorption data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据