4.7 Article

Stream temperature-equilibrium temperature relationship

期刊

WATER RESOURCES RESEARCH
卷 39, 期 9, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003WR002034

关键词

streams; water temperature; equilibrium temperature; air/water interface; reservoir effects; groundwater effects

向作者/读者索取更多资源

[1] Equilibrium temperature is the water temperature at which the sum of all heat fluxes through the water surface is zero. It can be calculated from weather data. Mean weekly stream temperature was found to be linearly related to mean weekly equilibrium temperature above 0 degreesC. The slopes and intercepts of the linear relationship were used to identify effects of shading, sheltering, cold water inputs ( groundwater, meltwater, and deep reservoir releases) and warm water inputs ( wastewater, cooling water, and lake surface water). The linearity hypothesis was confirmed for data from 596 U. S. Geological Survey stream gaging stations in the eastern and central United States. For approximately 15% ( 89 of 596, NSC greater than or equal to 0.90) of stream gaging stations, weekly equilibrium temperature was a good estimator of weekly stream temperature with zero wind sheltering and sun shading. With sheltering and shading the number rose to 26% ( 156 of 596). For these streams the heat exchange through the water surface has the most controlling effect on stream temperatures. For the remaining 74% of streams the relationship between weekly stream temperature and weekly equilibrium temperature was also linear, but its slope was significantly less than 1.0 ( even after calibration for shading and sheltering), indicating that processes other than surface heat exchange have an influence. Cold water inflows were dominant for 8% ( 46 of 596) of stream gaging sites. Less than 5% of all stream gaging stations showed evidence of unnatural heat inputs. Fitting an equilibrium temperature linearly to recorded stream temperatures, e. g., at a weekly timescale, can be of use to project stream temperatures under different weather-climate scenarios or to identify both natural and anthropogenic heat and hydrologic inputs to streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据