4.7 Article

Relaxation of a collisionless system and the transition to a new equilibrium velocity distribution

期刊

ASTROPHYSICAL JOURNAL
卷 595, 期 1, 页码 43-58

出版社

IOP Publishing Ltd
DOI: 10.1086/377249

关键词

dark matter; galaxies : evolution; galaxies : halos; methods : numerical; stellar dynamics

向作者/读者索取更多资源

In this paper we present our conclusions from the numerical study of the collapse of a destabilized collisionless stellar system. We use both direct integration of the Vlasov-Poisson equations and an N-body tree code to obtain our results, which are mutually confirmed. We find that spherical and moderately nonspherical collapse configurations evolve to new equilibrium configurations in which the velocity distribution approaches a Gaussian form, at least in the central regions. The evolution to this state has long been an open question, and in this work we are able to clarify the process responsible and to support predictions made from statistical considerations by Lynden-Bell and Nakamura. The simulations of merging N-body systems show a transition to a Gaussian velocity distribution that is increasingly suppressed as the initial separation of centers is increased. Possible reasons for this are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据