4.8 Review

Adipocyte-secreted factors synergistically promote mammary tumorigenesis through induction of anti-apoptotic transcriptional programs and proto-oncogene stabilization

期刊

ONCOGENE
卷 22, 期 41, 页码 6408-6423

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1206737

关键词

stromal cells; heterotypic signaling; breast cancer; adipocytes; Type VI collagen

资金

  1. NCI NIH HHS [CA94173] Funding Source: Medline
  2. NIDDK NIH HHS [1R01-DK55758] Funding Source: Medline
  3. NIGMS NIH HHS [T32-GM07288] Funding Source: Medline

向作者/读者索取更多资源

Mammary epithelial cells are embedded in a unique extracellular environment to which adipocytes and other stromal cells contribute. Mammary epithelial cells are critically dependent on this milieu for survival. However, it remains unknown which adipocyte-secreted factors are required for the survival of the mammary epithelia and what role these adipokines play in the process of ductal carcinoma tumorigenesis. Here, we take a systematic molecular approach to investigate the multiple ways adipocytes and adipokines can uniquely influence the characteristics and phenotypic behavior of malignant breast ductal epithelial cells. Microarray analysis and luciferase reporter assays indicate that adipokines specifically induce several transcriptional programs involved in promoting tumorigenesis, including increased cell proliferation (IGF2, FOS, JUN, cyclin D1), invasive potential (MMP1, ATF3), survival (A20, NFkappaB), and angiogenesis. One of the key changes in the transformed ductal epithelial cells associated with the cell cycle involves the induction of NFkappaB (five-fold) and cyclin D1 (three-fold). We show that by regulating the transcription of these molecules, the synergistic activity of adipocyte-derived factors can potentiate MCF-7 cell proliferation. Furthermore, compared to other stromal cell-secreted factors, the full complement of adipokines shows an unparalleled ability to promote increased cell motility, migration, and the capacity for angiogenesis. Adipocyte-secreted factors can affect tumorigenesis by increasing the stabilization of pro-oncogenic factors such as beta-catenin and CDK6 as a result of a reduction in the gene expression of their inhibitors (i.e. p18). An in vivo coinjection system using 3T3-L1 adipocytes and SUM159PT cells effectively recapitulates the host-tumor interactions in primary tumors. Type VI collagen, a soluble extracellular matrix protein abundantly expressed in adipocytes, is further upregulated in adipocytes during tumorigenesis. It promotes GSK3beta phosphorylation, beta-catenin stabilization, and increased beta-catenin activity in breast cancer cells and may critically contribute towards tumorigenesis when not counterbalanced by other factors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据