4.6 Article

Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 39, 页码 37393-37399

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M303922200

关键词

-

资金

  1. NIDA NIH HHS [DA13173, R01 DA013173-03] Funding Source: Medline

向作者/读者索取更多资源

Fatty acid amide hydrolase ( FAAH) is a mammalian amidase signature enzyme that inactivates neuromodulatory fatty acid amides, including the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. The recent determination of the three-dimensional structures of FAAH and two distantly related bacterial amidase signature enzymes indicates that these enzymes employ an unusual serine-serine-lysine triad for catalysis ( Ser-241/Ser-217/Lys-142 in FAAH). Mutagenesis of each of the triad residues in FAAH has been shown to severely reduce amidase activity; however, how these residues contribute, both individually and in cooperation, to catalysis remains unclear. Here, through a combination of site-directed mutagenesis, enzyme kinetics, and chemical labeling experiments, we provide evidence that each FAAH triad residue plays a distinct role in catalysis. In particular, the mutation of Lys-142 to alanine indicates that this residue functions as both a base involved in the activation of the Ser-241 nucleophile and an acid that participates in the protonation of the substrate leaving group. This latter property appears to support the unusual ability of FAAH to hydrolyze amides and esters at equivalent rates. Interestingly, although structural evidence indicates that the impact of Lys-142 on catalysis probably occurs through the bridging Ser-217, the mutation of this latter residue to alanine impaired catalytic activity but left the amide/ ester hydrolysis ratios of FAAH intact. Collectively, these findings suggest that FAAH possesses a specialized active site structure dedicated to a mechanism for competitive amide and ester hydrolysis where nucleophile attack and leaving group protonation occur in a coordinated manner dependent on Lys-142.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据