4.4 Article

Cryopreserved rat cortical cells develop functional neuronal networks on microelectrode arrays

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 128, 期 1-2, 页码 173-181

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0165-0270(03)00186-9

关键词

neurochip; biosensor; neuronal cell culture; MEA; APV; GABA; TTX

向作者/读者索取更多资源

Neurons growing on microelectrode arrays (MEAs) are promising tools to investigate principal neuronal network mechanisms and network responses to pharmaceutical substances. However, broad application of these tools, e.g. in pharmaceutical substance screening, requires neuronal cells that provide stable activity on MEAs. Cryopreserved cortical neurons (CCx) from embryonic rats were cultured on MEAs and their immunocytochemical and electrophysiological properties were compared with acutely dissociated neurons (Cx). Both cell types formed neuritic networks and expressed the neuron-specific markers microtubule associated protein 2, synaptophysin, neurofilament and gamma-aminobutyric acid (GABA). Spontaneous spike activity (SSA) was recorded after 9 up to 74 days in vitro (DIV) in CCx and from 5 to 30 DIV in Cx, respectively. Cx and CCx exhibited synchronized burst activity with similar spiking characteristics. Tetrodotoxin (TTX) abolished the SSA of both cell types reversibly. In CCx SSA-inhibition occurred with an IC50 of 1.1 nM for TTX, 161 muM for magnesium, 18 muM for D,L-2-amino-5-phosphonovaleric acid (APV) and 1 muM for GABA. CCx cells were easy to handle and developed long living, stable and active neuronal networks on MEAs with similar characteristics as Cx. Thus, these neurochips seem to be suitable for studying neuronal network properties and screening in pharmaceutical research. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据