4.8 Article

Compensatory evolution of a precursor messenger RNA secondary structure in the Drosophila melanogaster Adh gene

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1932834100

关键词

-

资金

  1. NIGMS NIH HHS [GM-58404] Funding Source: Medline

向作者/读者索取更多资源

Evidence for the evolutionary maintenance of a hairpin structure possibly involved in intron processing had been found in intron 1 of the alcohol dehydrogenase gene (Adh) in diverse Drosophila species. In this study, the putative hairpin structure was evaluated systematically in Drosophila melanogaster by elimination of either side of the stem using site-directed mutagenesis. The effects of these mutations and the compensatory double mutant on intron splicing efficiency and ADH protein production were assayed in Drosophila melanogaster Schneider L2 cells and germ-line transformed adult flies. Mutations that disrupt the putative hairpin structure right upstream of the intron branch point were found to cause a significant reduction in both splicing efficiency and ADH protein production. In contrast, the compensatory double mutant that restores the putative hairpin structure was indistinguishable from the WT in both splicing efficiency and ADH level. It was also observed by mutational analysis that a more stable secondary structure (with a longer stem) in this intron decreases both splicing efficiency and ADH protein production. Implications for RNA secondary structure and intron evolution are discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据