4.5 Article

Chemically resolved imaging of biological cells and thin films by infrared scanning near-field optical microscopy

期刊

BIOPHYSICAL JOURNAL
卷 85, 期 4, 页码 2705-2710

出版社

CELL PRESS
DOI: 10.1016/S0006-3495(03)74693-1

关键词

-

向作者/读者索取更多资源

The infrared (IR) absorption of a biological system can potentially report on fundamentally important microchemical properties. For example, molecular IR profiles are known to change during increases in metabolic flux, protein phosphorylation, or proteolytic cleavage. However, practical implementation of intracellular IR imaging has been problematic because the diffraction limit of conventional infrared microscopy results in low spatial resolution. We have overcome this limitation by using an IR spectroscopic version of scanning near-field optical microscopy (SNOM), in conjunction with a tunable free-electron laser source. The results presented here clearly reveal different chemical constituents in thin films and biological cells. The space distribution of specific chemical species was obtained by taking SNOM images at IR wavelengths ( l) corresponding to stretch absorption bands of common biochemical bonds, such as the amide bond. In our SNOM implementation, this chemical sensitivity is combined with a lateral resolution of 0.1 mum (approximate tolambda1/70), well below the diffraction limit of standard infrared microscopy. The potential applications of this approach touch virtually every aspect of the life sciences and medical research, as well as problems in materials science, chemistry, physics, and environmental research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据