4.4 Article

2D fast rotational matching for image processing of biophysical data

期刊

JOURNAL OF STRUCTURAL BIOLOGY
卷 144, 期 1-2, 页码 51-60

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jsb.2003.09.017

关键词

electron microscopy; single-particle analysis; 2D alignment; image processing; fast rotational matching

资金

  1. NIGMS NIH HHS [1R01GM62968] Funding Source: Medline

向作者/读者索取更多资源

In 3D single particle reconstruction, which involves the translational and rotational matching of a large number of electron microscopy (EM) images, the algorithmic performance is largely dependent on the efficiency and accuracy of the underlying 2D image alignment kernel. We present a novel fast rotational matching kernel for 2D images (FRM2D) that significantly reduces the cost of this alignment. The alignment problem is formulated using one translational and two rotational degrees of freedom. This allows us to take advantage of fast Fourier transforms (FFTs) in rotational space to accelerate the search of the two angular parameters, while the remaining translational parameter is explored, within a limited range, by exhaustive search. Since there are no boundary effects in FFTs of cyclic angular variables, we avoid the expensive zero padding associated with Fourier transforms in linear space. To verify the robustness of our method, efficiency and accuracy tests were carried out over a range of noise levels in realistic simulations of EM images. Performance tests against two standard alignment methods, resampling to polar coordinates and self-correlation, demonstrate that FRM2D compares very favorably to the traditional methods. FRM2D exhibits a comparable or higher robustness against noise and a significant gain in efficiency that depends on the fineness of the angular sampling and linear search range. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据