4.4 Article Proceedings Paper

The application of the transient, electromagnetic method in hydrogeophysical surveys

期刊

JOURNAL OF APPLIED GEOPHYSICS
卷 53, 期 4, 页码 181-198

出版社

ELSEVIER
DOI: 10.1016/j.jappgeo.2003.08.004

关键词

transient electromagnetic; TEM; coupling; buried valleys; 2D modelling; hydrogeophysics

向作者/读者索取更多资源

The transient electromagnetic (TEM) method has been used extensively for hydrogeophysical exploration in Denmark for the past decade. Innovative instrumentation combined with multi-dimensional modelling and interpretational insights based on experience gained through numerous case studies have proven to be a successful strategy. In the case study reported here, the combination revealed an unknown and unexpected buried valley complex. Drill hole data: were in good agreement with estimates of both the bearings and depths of valleys defined by the TEM surveys. The Pulled Array Transient Electromagnetic (PATEM) system was built to provide high data density for increased lateral resolution. A High moment Transient Electromagnetic (HiTEM) system was developed for delineation of aquifers to depths up to 300 in. Because both of these systems provide high data density, data quality can be assessed as part of the interpretational strategy. When acquiring TEM measurements in areas as densely populated as the Danish countryside, precautions must be taken to minimize coupling between the TEM system and man-made conductors. Modelling the slope of the flanks of buried valleys has challenged the adequacy of the one-dimensional (I-D) assumption for inversion of TEM data. The study shows that for a valley structure in a low-resistive layer, the I-D assumption is sufficient to track the presence of rather steep slopes. For a valley structure in a high-resistive layer, however, the insensitivity of the TEM method to resistors makes it difficult to determine a slope with a I-D inversion, and only the overall structure is defined. (C) 2003 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据