4.7 Article

Phase-field approach for faceted solidification -: art. no. 041604

期刊

PHYSICAL REVIEW E
卷 68, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.68.041604

关键词

-

向作者/读者索取更多资源

We extend the phase-field approach to model the solidification of faceted materials. Our approach consists of using an approximate gamma plot with rounded cusps that can approach arbitrarily closely the true gamma plot with sharp cusps that correspond to faceted orientations. The phase-field equations are solved in the thin-interface limit with local equilibrium at the solid-liquid interface [A. Karma and W.-J. Rappel, Phys. Rev. E 53, R3017 (1996)]. The convergence of our approach is first demonstrated for equilibrium shapes. The growth of faceted needle crystals in an undercooled melt is then studied as a function of undercooling and the cusp amplitude delta for a gamma plot of the form gamma=gamma(0)[1+delta(\sin theta\+\cos theta\)]. The phase-field results are consistent with the scaling law Lambdasimilar toV(-1/2) observed experimentally, where Lambda is the facet length and V is the growth rate. In addition, the variation of V and Lambda with delta is found to be reasonably well predicted by an approximate sharp-interface analytical theory that includes capillary effects and assumes circular and parabolic forms for the front and trailing rough parts of the needle crystal, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据