4.8 Review

Exact dynamical mean-field theory of the Falicov-Kimball model

期刊

REVIEWS OF MODERN PHYSICS
卷 75, 期 4, 页码 1333-1382

出版社

AMER PHYSICAL SOC
DOI: 10.1103/RevModPhys.75.1333

关键词

-

向作者/读者索取更多资源

The Falicov-Kimball model was introduced in 1969 as a statistical model for metal-insulator transitions; it includes itinerant and localized electrons that mutually interact with a local Coulomb interaction and is the simplest model of electron correlations. It can be solved exactly with dynamical mean-field theory in the limit of large spatial dimensions, which provides an interesting benchmark for the physics of locally correlated systems. In this review, the authors develop the formalism for solving the Falicov-Kimball model from a path-integral perspective and provide a number of expressions for single- and two-particle properties. Many important theoretical results are examined that show the absence of Fermi-liquid features and provide a detailed description of the static and dynamic correlation functions and of transport properties. The parameter space is rich and one finds a variety of many-body features like metal-insulator transitions, classical valence fluctuating transitions, metamagnetic transitions, charge-density-wave order-disorder transitions, and phase separation. At the same time, a number of experimental systems have been discovered that show anomalies related to Falicov-Kimball physics [including YbInCu4, EuNi2(Si1-xGex)(2), NiI2, and TaxN].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据