4.2 Article

Binding of acetaldehyde to a glutathione metabolite: Mass spectrometric characterization of an acetaldehyde-cysteinylglycine conjugate

期刊

ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH
卷 27, 期 10, 页码 1613-1621

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/01.ALC.0000089958.65095.84

关键词

cysteinylglycine; glutathione; thiazolidine; mass spectrometry; acetaldehyde

资金

  1. NIAAA NIH HHS [R37 AA10630, P50 AA07186] Funding Source: Medline

向作者/读者索取更多资源

Background: Ethanol administration decreases hepatic glutathione levels and increases urinary sulfhydryl excretion. Ethanol-induced liver injury is blunted by the administration of glutathione precursors. Acetaldehyde generated in the metabolism of ethanol binds to a number of amino acid residues in proteins and peptides, but it does not react readily with glutathione. Due to the possible role of acetaldehyde in cysteine and glutathione homeostasis, we investigated the reaction of acetaldehyde to cysteinylglycine, the dipeptide generated in vivo in the hydrolysis of glutathione by gamma-glutamyltransferase. Methods: A conjugate between acetaldehyde and cysteinylglycine was generated under physiologically relevant conditions, both in vitro and in vivo. It was separated by a new reverse-phase high-performance liquid chromatography method and identified by electrospray ionization/ion trap tandem mass spectrometric analysis. Results: The conjugate with a stoichiometry of 1:1 between cysteinylglycine and acetaldehyde is most rapidly generated in vitro and was identified by mass spectroscopy as 2-methyl-thiazolidine-4-carbonyl-glycine. This thiazolidine derivative is stable in vitro and in biological fluids of rats. The conjugate was present in high concentrations in the bile of rats pretreated with ethanol and an inhibitor of aldehyde dehydrogenase. Conclusions: The sequestering of cysteinylglycine by acetaldehyde occurs rapidly under physiologic conditions. Long-lived sulfur-containing biomolecules that incorporate acetaldehyde might affect cysteine and glutathione homeostasis and may also play a protective role by reducing circulating acetaldehyde levels. The acetaldehyde conjugate or its metabolic products could potentially serve as markers of ethanol consumption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据