4.7 Article

Structural changes in isothermal crystallization process of polyoxymethylene investigated by time-resolved FTIR, SAXS and WAXS measurements

期刊

POLYMER
卷 44, 期 22, 页码 6973-6988

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2003.08.019

关键词

polyoxymethylene; isothermal crystallization; folded chain crystal

向作者/读者索取更多资源

Structural evolution in the isothermal crystallization process of polyoxymethylene from the molten state has been investigated by carrying out the time-resolved measurements of infrared spectra and synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering. In case of isothermal crystallization at 130degreesC, for example, the infrared bands intrinsic of folded chain crystal (FCC) morphology appeared at first, and then the bands of extended chain crystal (ECC) morphology were detected with time delay of ca. 150 s. In the SAXS experiment at 130degreesC, the lamellar stacking structure of the long period of ca. 15 nm was observed at first, which changed rapidly to ca. 12 nm in a short time. The SAXS peak with the long period of ca. 6 nm started to appear with a time delay of ca. 150 s after the initial lamellae appeared and coexisted with the initially-observed 12 nm peak. Judging from the timing to detect these characteristic infrared and SAXS signals, a good correspondence was found to exist between the stacked lamellar structure of 12 nm long period and FCC morphology and between the structure of 6 nm long period and ECC morphology. The quantitative analysis was made for the SAXS data on the basis of the lamellar insertion model combined with the paracrystalline theory of the second-kind of disorder. The following structural evolution was deduced from all these results. Immediately after the temperature jump from the melt to 130degreesC, the stacked lamellar structure of FCC morphology was generated at first. New lamellae were formed from the amorphous region in between the originally-existing lamellae about 150 s later, where the random chain segments bridging the adjacent lamellae were extended to form the taut tie chains, giving infrared bands of ECC morphology. This inserted lamellar structure of 6 nm long period coexisted at a population of ca. 6% with the initially-formed lamellar stacking structure of 12 nm long period. When the experiment was made at 150degreesC, only the formation of stacked lamellar structure of FCC morphology was observed and the insertion of new lamella did not occur. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据