4.7 Article

Free energy of liquid water on the basis of quasichemical theory and ab initio molecular dynamics -: art. no. 041505

期刊

PHYSICAL REVIEW E
卷 68, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.68.041505

关键词

-

向作者/读者索取更多资源

We use ab initio molecular dynamics as a basis for quasichemical theory evaluation of the free energy of water near conventional liquid thermodynamic states. The Perdew-Wang-91 (PW91), Perdew-Burke-Ernzerhof (PBE), and revised PBE (rPBE) functionals are employed. The oxygen radial density distribution using the rPBE functional is in reasonable agreement with current experiments, whereas the PW91 and PBE functionals predict a more structured oxygen radial density distribution. The diffusion coefficient with the rPBE functional is in reasonable accord with experiments. Using a maximum entropy procedure, we obtain x(0) from the coordination number distribution x(n) for oxygen atoms having n neighbors. Likewise, we obtain p(0) from p(n), the probability of observing cavities of specified radius containing n water molecules. The probability x(0) is a measure of the local chemical interactions and is central to the quasichemical theory of solutions. The probability p(0), central to the theory of liquids, is a measure of the free energy required to open cavities of defined sizes in the solvent. Using these values and a reasonable model for electrostatic and dispersion effects, the hydration free energy of water in water at 314 K is calculated to be -5.1 kcal/mole with the rPBE functional, in encouraging agreement with the experimental value of -6.1 kcal/mole.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据