4.7 Article

Nonlinear hydromagnetic wave support of a stratified molecular cloud

期刊

ASTROPHYSICAL JOURNAL
卷 595, 期 2, 页码 842-857

出版社

IOP PUBLISHING LTD
DOI: 10.1086/377495

关键词

ISM : clouds; ISM : magnetic fields; methods : numerical; MHD; turbulence; waves

向作者/读者索取更多资源

We perform numerical simulations of nonlinear MHD waves in a gravitationally stratified molecular cloud that is bounded by a hot and tenuous external medium. We study the relation between the strength of the turbulence and various global properties of a molecular cloud, within a 1.5-dimensional approximation. Under the influence of a driving source of Alfvenic disturbances, the cloud is lifted up by the pressure of MHD waves and reaches a steady state characterized by oscillations about a new time-averaged equilibrium state. The nonlinear effect results in the generation of longitudinal motions and many shock waves; however, the wave kinetic energy remains predominantly in transverse, rather than longitudinal, motions. There is an approximate equipartition of energy between the transverse velocity and fluctuating magnetic field ( as predicted by small-amplitude theory) in the region of the stratified cloud that contains most of the mass; however, this relation breaks down in the outer regions, particularly near the cloud surface, where the motions have a standing-wave character. This means that the Chandrasekhar-Fermi formula applied to molecular clouds must be significantly modified in such regions. Models of an ensemble of clouds show that for various strengths of the input energy, the velocity dispersion in the cloud sigma proportional to Z(0.5), where Z is a characteristic size of the cloud. Furthermore, sigma is always comparable to the mean Alfven velocity of the cloud, consistent with observational results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据