4.5 Article Proceedings Paper

Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains

期刊

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
卷 114, 期 4, 页码 2079-2098

出版社

ACOUSTICAL SOC AMER AMER INST PHYSICS
DOI: 10.1121/1.1612493

关键词

-

资金

  1. NIDCD NIH HHS [R01 DC002258, DC02258, R01 DC002258-08, N01-DC-6-2100, P01 DC000361-100005, DC00361] Funding Source: Medline

向作者/读者索取更多资源

Rubinstein et al. [Hearing Res. 127, 108-118 (1999)] suggested that the representation of electric stimulus waveforms in the temporal discharge patterns of auditory-nerve fiber (ANF) might be improved by introducing an ongoing, high-rate, desynchronizing pulse train (DPT). To test this hypothesis, activity of ANFs was studied in acutely deafened, anesthetized cats in response to 10-min-long, 5-kpps electric pulse trains that were sinusoidally modulated for 400 ms every second. Two classes of responses to sinusoidal modulations of the DPT were observed. Fibers that only responded transiently to the unmodulated DPT showed hyper synchronization and narrow dynamic ranges to sinusoidal modulators, much as responses to electric sinusoids presented without a DPT. In contrast, fibers that exhibited sustained responses to the DPT were sensitive to modulation depths as low as 0.25% for a modulation frequency of 417 Hz. Over a 20-dB range of modulation depths, responses of these fibers resembled responses to tones in a healthy ear in both discharge rate and synchronization index. This range is much wider than the dynamic range typically found with electrical stimulation without a DPT, and comparable to the dynamic range for acoustic stimulation. These results suggest that a stimulation strategy that uses small signals superimposed upon a large DPT to encode sounds may evoke temporal discharge patterns in some ANFs that resemble responses to sound in a healthy ear. (C) 2003 Acoustical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据