4.4 Article

Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity

期刊

PHYSICS OF PLASMAS
卷 10, 期 10, 页码 4137-4152

出版社

AIP Publishing
DOI: 10.1063/1.1611881

关键词

-

向作者/读者索取更多资源

Simulations and experimental characterizations of a stationary plasma thruster are compared for four different wall materials to investigate near-wall conductivity (dielectric materials) and in-wall conductivity (conducting materials) in such a discharge. Using a one-dimensional transient fluid model that takes into account a possible electron temperature anisotropy, it is shown that electron-wall backscattering plays a crucial role by maintaining a relatively high electron temperature along the magnetic field lines which in turn drives large electron currents toward the walls. The large differences in discharge current observed experimentally for the dielectric materials are qualitatively recovered, confirming that near-wall conductivity results from the combined effects of secondary electron emission and electron backscattering. A clear correlation is found between the appearance of space charge saturation at the walls and a jump of the discharge current observed in experiments when varying the discharge voltage or the magnetic field. The anomalously high values of discharge current observed experimentally with graphite are also correctly recovered in simulations, which highlight a plasma short-circuiting effect resulting from in-wall currents. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据