4.4 Article

Disorder in layered hydroxides: DIFFaX simulation of the X-ray powder diffraction patterns of nickel hydroxide

期刊

CLAYS AND CLAY MINERALS
卷 51, 期 5, 页码 570-576

出版社

CLAY MINERALS SOCIETY
DOI: 10.1346/CCMN.2003.0510511

关键词

cation vacancies; crystallite size; DIFFaX; interstratification; nickel hydroxide; stacking faults; turbostraticity

向作者/读者索取更多资源

Layered metal hydroxides exhibit non-uniform broadening of lines in their X-ray powder diffraction (XRPD) patterns, which cannot always be explained on the basis of crystallite size effects. In the case of hexagonal solids such as nickel hydroxide, DIFFaX simulations of the XRPD patterns show that: (1) stacking faults and turbostratic disorder at low (<30%) incidence selectively broaden the h0l reflections; (2) turbostratic disorder at high (>40%) incidence causes asymmetric broadening of the hk0 reflections and a complete extinction of the hk1 reflections while leaving 001 unchanged; (3) interstratification selectively broadens the non-hk0 reflections; and (4) cation vacancies reduce the relative intensity of the 100 reflection. In contrast, a reduction in the thickness of the crystallites along the stacking direction of the layers selectively broadens the 001 reflections while a reduction in the disc diameter causes the progressive broadening and extinction of the hk0 reflections. Comparison with experimental data shows that several kinds of disorders have to be invoked to account for the observed broadening. DIFFaX simulations enable the quantification of the different kinds of disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据