4.1 Article

Spatial models of prebiotic evolution:: Soup before pizza?

期刊

ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES
卷 33, 期 4-5, 页码 319-355

出版社

SPRINGER
DOI: 10.1023/A:1025742505324

关键词

coexistence; early evolution; Eigen's paradox; prebiotic soup; open chaotic flow; prebiotic pizza; parasites; RNA-world

类别

向作者/读者索取更多资源

The problem of information integration and resistance to the invasion of parasitic mutants in prebiotic replicator systems is a notorious issue of research on the origin of life. Almost all theoretical studies published so far have demonstrated that some kind of spatial structure is indispensable for the persistence and/or the parasite resistance of any feasible replicator system. Based on a detailed critical survey of spatial models on prebiotic information integration, we suggest a possible scenario for replicator system evolution leading to the emergence of the first protocells capable of independent life. We show that even the spatial versions of the hypercycle model are vulnerable to selfish parasites in heterogeneous habitats. Contrary, the metabolic system remains persistent and coexistent with its parasites both on heterogeneous surfaces and in chaotically mixing flowing media. Persistent metabolic parasites can be converted to metabolic cooperators, or they can gradually obtain replicase activity. Our simulations show that, once replicase activity emerged, a gradual and simultaneous evolutionary improvement of replicase functionality ( speed and fidelity) and template efficiency is possible only on a surface that constrains the mobility of macromolecule replicators. Based on the results of the models reviewed, we suggest that open chaotic flows ('soup') and surface dynamics ('pizza') both played key roles in the sequence of evolutionary events ultimately concluding in the appearance of the first living cell on Earth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据