4.5 Article

TGF-β cytokines increase senescence-associated beta-galactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence

期刊

EXPERIMENTAL GERONTOLOGY
卷 38, 期 10, 页码 1179-1188

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2003.08.008

关键词

human prostate; differentiation; neuroendocrine cells; cellular senescence; TGF-beta; SA-beta galactosidase

向作者/读者索取更多资源

The family of transforming growth factors betas (TGF-betas) comprises molecules involved in growth inhibition, stress-induced premature senescence, epithelial mesenchymal transition and differentiation processes. The aim of this study was to clarify the effect of long term exposure of human prostate basal cells to TGF-betas, which are found in high concentrations in prostatic fluid and areas of benign prostatic hyperplasia (BPH). Basal cell cultures established from prostate explants (n = 3) were either grown into cellular senescence, or stimulated with TGF-beta1, beta2 and beta3. Similar to cellular senescence, TGF-beta stimulation resulted in an increase of SA-beta galactosidase (SA-beta-gal) activity, flattened and enlarged cell morphology, and down-regulation of the inhibitor of differentiation Id-1. TGF-beta-treated prostate epithelial cells neither showed terminal growth arrest nor induction of important senescence-relevant genes, such as p16(INK4A), IFI-6-16, IGFBP-3 or Dkk-3. Cells stained positive for cytokeratins 8/18, but did not express other lumenal markers, such as prostate-specific antigen and androgen-receptors. TGF-betas increased also the expression of the mesenchymal marker vimentin, indicating that basal epithelial cells underwent differentiation with lumenal and mesenchymal features. In contrast, in vitro-differentiated neuroendocrine-like cells from prostate organoide cultures, expressing chromogranin A and cytokeratin 18, strongly stained positive for SA-beta-gal. Thus, SA-beta-gal activity is not only a marker for senescence, but also for differentiation of human prostate epithelial cells. With regard to the in vivo situation, in addition to cellular senescence, TGF-beta could contribute to the increased number of SA-beta-gal positive epithelial cells in BPH. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据