4.7 Article

Epidermal COX-2 induction following ultraviolet irradiation: Suggested mechanism for the role of COX-2 inhibition in photoprotection

期刊

JOURNAL OF INVESTIGATIVE DERMATOLOGY
卷 121, 期 4, 页码 853-861

出版社

BLACKWELL PUBLISHING INC
DOI: 10.1046/j.1523-1747.2003.12495.x

关键词

cyclooxygenase-2; epidermis; keratinocyte; ultraviolet

资金

  1. NIAMS NIH HHS [R01 AR-46828] Funding Source: Medline

向作者/读者索取更多资源

The cyclooxygenase isoforms, COX-1 and COX-2, are involved in the biosynthesis of prostaglandin E-2, a major prostaglandin involved in epidermal homeostasis and repair. Cancer originating in the epidermis can develop when keratinocyte proliferation and apoptosis become dysregulated, resulting in sustained epidermal hyperplasia. COX-2 inhibitors, which demonstrate significant in vivo selectivity relative to COX-1, suppress both ultraviolet-induced epidermal tumor development and progression, suggesting that prostaglandin regulation of keratinocyte biology is involved in the pathogenesis of epidermal neoplasia. In this study, we characterized the expression of COX-1 and COX-2, as well as keratinocyte proliferation, differentiation, and apoptosis, following acute ultraviolet irradiation in the hairless SKH-1 mouse. Following acute ultraviolet exposure, COX-2 expression was predominantly induced in the basal keratinocyte layer coincident with an increase in keratinocyte proliferation and apoptosis. The role of COX-2 was further evaluated using a selective COX-2 inhibitor, SC-791, as well as the traditional nonsteroidal COX inhibitor, indomethacin. Following acute ultraviolet irradiation, inhibition of COX-2 with either inhibitor decreased epidermal keratinocyte proliferation. Likewise, keratinocyte apoptosis was increased with COX-2 inhibition, particularly in the proliferating basal keratinocyte layer. There was also a modest inhibition of keratinocyte differentiation. These data suggest that COX-2 expression is probably necessary for keratinocyte survival and proliferation occurring after acute ultraviolet irradiation. We hypothesize that selective COX-2 inhibition, as described herein, may lead to enhanced removal of ultraviolet-damaged keratinocytes, thereby decreasing malignant transformation in the epidermis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据