4.3 Article

MMP-9 deficiency affects axonal outgrowth, migration, and apoptosis in the developing cerebellum

期刊

MOLECULAR AND CELLULAR NEUROSCIENCE
卷 24, 期 2, 页码 395-408

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S1044-7431(03)00196-9

关键词

matrix metalloproteinase; cerebellum; granule cell; cell migration; axonal outgrowth; apoptotic cell death

向作者/读者索取更多资源

Matrix metalloproteinases (MMPs) are responsible for the extensive extracellular proteolysis that plays a central role in regulating the pericellular environment, contributing to morphogenesis and developmental remodeling. In the CNS, there is increasing in vitro evidence for the involvement of MMPs in neurite elongation and axonal guidance. Here, we show that expression of MMP-9 is spatiotemporally related to cerebellar granule cell migration during postnatal development. Using cerebellar explant cultures, we demonstrated that a specific MMP-9-blocking antibody affects granular cell axonal outgrowth and migration in a dose-dependent manner. In addition, the in vivo analysis of MMP-9-deficient mice revealed abnormal accumulation of granular precursors (GPs) in the external granular layer (EGL) at a time when migration is normally extensive. Furthermore, GP migration was delayed and their programmed cell death was reduced in MMP-9-deficient mice, suggesting that MMP-9 is involved in the control of granule cell migration and apoptosis. These results provide direct evidence for a physiological role of MMP-9 in neuronal precursor migration and apoptosis in the developing cerebellum, and emphasize the importance of MMP-9 in the temporal regulation of the cerebellar microenvironment. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据