4.5 Article

Functionality of the spindle checkpoint during the first meiotic division of mammalian oocytes

期刊

REPRODUCTION
卷 126, 期 4, 页码 443-450

出版社

SOC REPRODUCTION FERTILITY
DOI: 10.1530/rep.0.1260443

关键词

-

向作者/读者索取更多资源

The spindle checkpoint ensures accurate chromosome segregation by delaying anaphase until all chromosomes are correctly aligned on the microtubule spindle. Although this mechanism is conserved throughout eukaryotic evolution, it is unclear whether it operates during meiosis in female mammals. The results of the present study show that in mouse oocytes spindle alterations prevent both chromosome segregation and MPF (M phase promoting factor) inactivation during the first meiotic M phase. Moreover, the spindle checkpoint component budding uninhibited by benzimidazole 1 (BUB1) localizes to kinetochores and is phosphorylated until anaphase of both meiotic M phases. Both localization and phosphorylation are similar to those observed in oocytes at microtubule depolymerization. In addition, the kinetochore localization and phosphorylation of BUB1 do not depend on the MOS/... /MAPK pathway. These data indicate that the spindle checkpoint is probably active during meiotic maturation in mouse oocytes. BUB1 remains associated with kinetochores and is phosphorylated during the metaphase arrest of the second meiotic M phase, indicating that this protein may also play a role in the natural metaphase 11 arrest in mammalian oocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据