4.6 Article

Molecular pathway for cancer metastasis to bone

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 40, 页码 39044-39050

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M304494200

关键词

-

资金

  1. NIDDK NIH HHS [DK60933, R01 DK060933] Funding Source: Medline
  2. NIGMS NIH HHS [GM40711, R01 GM040711] Funding Source: Medline

向作者/读者索取更多资源

The molecular mechanism leading to the cancer metastasis to bone is poorly understood but yet determines prognosis and therapy. Here, we define a new molecular pathway that may account for the extraordinarily high osteotropism of prostate cancer. By using SPARC (secreted protein, acidic and rich in cysteine)-deficient mice and recombinant SPARC, we demonstrated that SPARC selectively supports the migration of highly metastatic relative to less metastatic prostate cancer cell lines to bone. Increased migration to SPARC can be traced to the activation of integrins alphaVbeta3 and alphaVbeta5 on tumor cells. Such activation is induced by an autocrine vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR)-2 loop on the tumor cells, which also supports the growth and proliferation of prostate cancer cells. A consequence of SPARC recognition by alphaVbeta5 is enhanced VEGF production. Thus, prostate cancer cells expressing VEGF/VEGFR-2 will activate alphaVbeta3 and alphaVbeta5 on their surface and use these integrins to migrate toward SPARC in bone. Within the bone environment, SPARC engagement of these integrins will stimulate growth of the tumor and further production of VEGF to support neoangiogenesis, thereby favoring the development of the metastatic tumor. Supporting this model, activated integrins were found to colocalize with VEGFR-2 in tissue samples of metastatic prostate tumors from patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据