4.7 Article

The Escherichia coli outer membrane cobalamin transporter BtuB:: Structural analysis of calcium and substrate binding, and identification of orthologous transporters by sequence/structure conservation

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 332, 期 5, 页码 999-1014

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2003.07.005

关键词

BtuB; outer membrane transport; vitamin B-12; cobalamin; calcium binding

资金

  1. NIDDK NIH HHS [DK 59999] Funding Source: Medline
  2. NIGMS NIH HHS [GM 019078] Funding Source: Medline

向作者/读者索取更多资源

Gram-negative bacteria possess specialized active transport systems that function to transport organometallic cofactors or carriers, such as cobalamins, siderophores, and porphyrins, across their outer membranes. The primary components of each transport system are an outer membrane transporter and the energy-coupling protein TonB In Escherichia coli, the TonB-dependent outer membrane transporter BtuB carries out active transport of cobalamin (Cbl) substrates across its outer membrane. Cobalamins bind to BtuB with nanomolar affinity. Previous studies implicated calcium in high-affinity binding of cyanocobalamin (CN-Cbl) to BtuB. We previously solved four structures of BtuB or BtuB complexes: an apo-structure of a methionine-substitution mutant (used to obtain experimental phases by selenomethionine single-wavelength anomalous diffraction studies); an apo-structure of wild-type BtuB; a binary complex of calcium and wild-type BtuB; and a ternary complex of calcium, CN-Cbl and wildtype BtuB. We present an analysis of the binding of calcium in the binary and ternary complexes, and show that calcium coordination changes upon substrate binding. High-affinity CN-Cbl binding and calcium coordination are coupled. We also analyze the binding mode of CN-Cbl to BtuB, and compare and contrast this binding to that observed in other proteins that bind Cbl. BtuB binds CN-Cbl in a manner very different from Cbl-utilizing enzymes and the periplasmic Cbl binding protein BtuE Homology searches of bacterial genomes, structural annotation based on the presence of conserved Cbl-binding residues identified by analysis of our BtuB structure, and detection of homologs of the periplasmic Cbl-binding binding protein BtuF enable identification of putative BtuB orthologs in enteric and nonenteric bacterial species. (C) 2003 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据