4.6 Article

Structural properties of the chloroplast stromal processing peptidase required for its function in transit peptide removal

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 278, 期 41, 页码 39497-39502

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M305729200

关键词

-

向作者/读者索取更多资源

The stromal processing peptidase (SPP) catalyzes removal of transit peptides from a diversity of precursor proteins imported into chloroplasts. SPP contains an HXXEH zinc-binding motif characteristic of members of the metallopeptidase family M16. We previously found that the three steps of precursor processing by SPP (i.e. transit peptide binding, removal, and conversion to a degradable subfragment) are mediated by features that reside in the C-terminal 10 - 15 residues of the transit peptide. In this study, we performed a mutational analysis of SPP to identify structural elements that determine its function. SPP loses the ability to proteolytically remove the transit peptide when residues of the HXXEH motif, found in an N-terminal region, are mutated. Deletion of 240 amino acids from its C terminus also abolishes activity. Interestingly, however, SPP can still carry out the initial binding step, recognizing the C-terminal residues of the transit peptide. Hence, transit peptide binding and removal are two separable steps of the overall processing reaction. Transit peptide conversion to a subfragment also depends on the HXXEH motif. The precursor of SPP, containing an unusually long transit peptide itself, is not proteolytically active. Thus, the SPP precursor is synthesized as a latent form of the metallopeptidase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据