4.7 Review

Theoretical light curves of Type II-P supernovae and applications to cosmology

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-8711.2003.06958.x

关键词

stars : evolution; stars : interiors; supernovae : general; distance scale

向作者/读者索取更多资源

Based on an extensive grid of stellar models between 13 and 25 M. and a wide range of metallicities, we have studied the light curves of core collapse supernovae, their application to cosmology and their evolutionary effects with redshift. The direct link between the hydrodynamics and radiation transport allows us to calculate monochromatic light curves. With decreasing metallicity, Z, and increasing mass, progenitors tend to explode as compact blue supergiants (BSG) and produce subluminous supernovae that are approximately 1.5 mag dimmer than normal Type II supernovae (SNe II) with red supergiant (RSG) progenitors. Progenitors with small masses tend to explode as RSGs even at low Z. The consequence for testing the chemical evolution is obvious, namely a strong bias when using the statistics of core collapse supernovae to determine the history of star formation. Our study is limited in scope with respect to the explosion energies and the production of radioactive Ni. Within the class of extreme SNe II-P supernovae, the light curves are rather insensitive with respect to the progenitor mass and explosion energy compared with analytic models based on parametrized stellar structures. We expect a wider range of brightness due to variations in Ni-56 because radioactive energy is a significant source of luminosity. However, the overall insensitivity of light curves may allow their use as quasi-standard candles for distance determination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据