4.7 Article

Squeeze and viscous dampings in micro electrostatic comb drives

期刊

SENSORS AND ACTUATORS A-PHYSICAL
卷 107, 期 2, 页码 193-203

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0924-4247(03)00295-4

关键词

micro comb drive; micro comb structure; squeeze damping; viscous damping

向作者/读者索取更多资源

Numerical results in this work demonstrate that the flow around an oscillating electrode of a micro electrostatic comb drive is quite different from a Stokes flow. A vortex is observed in the region between the electrode and the substrate. This vortex slows down the fluid velocity and significantly increases the damping. Squeeze damping and viscous damping are important energy dissipation mechanisms in oscillating micro comb drives. The Knudsen number for micro comb drives indicates that the flow is a slip flow. The slip boundary conditions reduce the viscous and squeeze dampings by about 12.2%. Extending the distance between oscillating and fixed electrodes is an effective way to reduce damping. This effect was investigated numerically. Increasing the distance between the electrode and the substrate is another alterative for decreasing the damping. Its effect on damping was also studied numerically. Numerical results show that the numerical procedure proposed in this work is an effective tool in designing micro electrostatic comb drives. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据