4.8 Article

Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K+ channels

期刊

EMBO JOURNAL
卷 22, 期 20, 页码 5403-5411

出版社

WILEY
DOI: 10.1093/emboj/cdg528

关键词

diacylglycerol; glutamate; IP3; phosphatidic acid; PIP2

向作者/读者索取更多资源

Group I metabotropic glutamate receptors (mGluRs) are implicated in diverse processes such as learning, memory, epilepsy, pain and neuronal death. By inhibiting background K+ channels, group I mGluRs mediate slow and long-lasting excitation. The main neuronal representatives of this K+ channel family (K-2P or KCNK) are TASK and TREK. Here, we show that in cerebellar granule cells and in heterologous expression systems, activation of group I mGluRs inhibits TASK and TREK channels. d-myo-inositol-1,4,5-triphosphate and phosphatidyl-4,5-inositol-biphosphate depletion are involved in TASK channel inhibition, whereas diacylglycerols and phosphatidic acids directly inhibit TREK channels. Mechanisms described here with group I mGluRs will also probably stand for many other receptors of hormones and neurotransmitters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据