4.6 Article

Conductance and localization in disordered wires: The role of evanescent states

期刊

PHYSICAL REVIEW B
卷 68, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.68.155403

关键词

-

向作者/读者索取更多资源

This paper extends an earlier analytical scattering matrix treatment of conductance and localization in coupled two and three Anderson chain systems for weak disorder when evanescent states are present at the Fermi level. Such states exist typically when the interchain coupling exceeds the width of propagating energy bands associated with the various transverse eigenvalues of the coupled tight-binding systems. We calculate reflection and transmission coefficients in cases where, besides propagating states, one or two evanescent states are available at the Fermi level for elastic scattering of electrons by the disordered systems. We observe important qualitative changes in these coefficients and in the related localization lengths due to ineffectiveness of the evanescent modes for transmission and reflection in the various scattering channels. In particular, the localization lengths are generally significantly larger than the values obtained when evanescent modes are absent. Effects associated with disorder mediated coupling between propagating and evanescent modes are shown to be suppressed by quantum interference effects, in lowest order for weak disorder.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据