4.6 Article

The time course of the motoneurone afterhyperpolarization is related to motor unit twitch speed in human skeletal muscle

期刊

JOURNAL OF PHYSIOLOGY-LONDON
卷 552, 期 2, 页码 657-664

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1113/jphysiol.2003.048132

关键词

-

向作者/读者索取更多资源

The relationship between the electrophysiological properties of motoneurones and their muscle units has been established in animal models. A functionally significant relationship exists whereby motoneurones with long post-spike afterhyperpolarizations (AHPs) innervate slow contracting muscle units. The purpose of this study was to determine whether the time course of the AHP as measured by its time constant is associated with the contractile properties of its muscle unit in humans. Using an intramuscular fine wire electrode, 46 motor units were recorded in eight subjects as they held a low force contraction of the first dorsal interosseus muscle for approximately 10 min. By applying a recently validated transform to the interspike interval histogram, the mean voltage versus time trajectory of the motoneurone AHP was determined. Spike-triggered averaging was used to extract the muscle unit twitch from the whole muscle force with strict control over force variability and motor unit discharge rate (interspike intervals between 120 and 200 ms). The AHP time constant was positively correlated to the time to half-force decay (rho = 0.36, P < 0.05) and twitch duration (rho = 0.57, P < 0.001); however, time to peak force failed to reach significance (rho = 0.27, P < 0.07). These results suggest that a similar functional relationship exists in humans between the motoneurone AHP and the muscle unit contractile properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据