4.7 Article

Characterizing vertical forest structure using small-footprint airborne LiDAR

期刊

REMOTE SENSING OF ENVIRONMENT
卷 87, 期 2-3, 页码 171-182

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0034-4257(03)00139-1

关键词

remote sensing; tree measurement; LiDAR; forest structure; intermountain west

向作者/读者索取更多资源

Characterization of forest attributes at fine scales is necessary to manage terrestrial resources in a manner that replicates, as closely as possible, natural ecological conditions. In forested ecosystems, management decisions are driven by variables such as forest composition, forest structure (both vertical and horizontal), and other ancillary data (i.e., topography, soils, slope, aspect, and disturbance regime dynamics). Vertical forest structure is difficult to quantify and yet is an important component in the decision-making process. This study investigated the use of light detection and ranging (LiDAR) data for classifying this attribute at landscape scales for inclusion into decision-support systems. Analysis of field-derived tree height variance demonstrated that this metric could distinguish between two classes of vertical forest structure. Analysis of LiDAR-derived tree height variance demonstrated that differences between single-story and multistory vertical structural classes could be detected. Landscape-scale classification of the two structure classes was 97% accurate. This study suggested that within forest types of the Intermountain West region of the United States, LiDAR-derived tree heights could be useful in the detection of differences in the continuous, nonthematic nature of vertical forest structure with acceptable accuracies. (C) 2003 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据