4.6 Article

Expression regulation and genomic organization of human polynucleotide phosphorylase, hPNPaseold-35, a Type I interferon inducible early response gene

期刊

GENE
卷 316, 期 -, 页码 143-156

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0378-1119(03)00752-2

关键词

transcriptional regulation; promoter deletion analysis; promoter assays; interferon response elements; electrophoretic mobility shift assays; hPNPase(old-35) genomic structure and chromosomal localization

向作者/读者索取更多资源

An overlapping pathway screening (OPS) approach designed to identify and clone genes displaying parallel expression profiles as a function of induction of terminal differentiation and cellular senescence in human cells identified a novel gene old-35. Sequence and functional analysis indicates that old-35 encodes human polynucleotide phosphorylase, hPNPase(old-35). Polynucleotide phosphorylases comprise a family of phosphate dependent 3' -5' RNA exonucleases implicated in RNA regulation. Treatment of HO-I human melanoma and additional diverse normal and tumor-derived human cell types with Type I interferon (IFN), IFN-beta or IFN-alpha, induces hPNPase(old-35) expression. To provide insights into the regulation of hPNPase(old-35), we cloned and analyzed the promoter region of this gene. These studies demonstrate that IFN-beta controls hPAPase(old-35) expression by transcriptional modulation rather than by altering mRNA stability. Transcriptional activation of hPNPase(old-35) by IFN-beta is primarily mediated by the interferon stimulatory response element (ISRE) present in its promoter. Analysis of hPNPase(old-35) expression in cell lines defective in various IFN signaling molecules confirms that hPNPase(old-35) expression is dependent upon the Janus activated kinase (JAK)/signal transducers and activators of transcription (STAT) pathway. Furthermore, gel shift analyses document that hPNPase(old-35) is a direct target of the interferon stimulated gene factor 3 (ISGF3) complex. The hPNPase(old-35) gene spans similar to 54 kb of genomic DNA and is distributed on 28 exons and 27 introns. hPNPase(old-35) maps to 2p15-2p16.1, a region implicated in hereditary nonpolyposis colorectal cancer, Carney complex, Doyne's honeycomb retinal dystrophy and several other diseases. To provide insights into PNPase function in vivo, we have also cloned the mouse PNPase(old-35) cDNA, mPNPase(old-35). Induction of hPNPase(old-35) by IFN treatment as well as during differentiation and senescence suggest that this gene may play a significant role in regulating cellular growth and that overlapping gene expression changes, also induced by IFN, may contribute to these important physiological processes. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据