4.5 Article

Phenotypic identification of rat rostroventrolateral medullary presympathetic vasomotor neurons inhibited by exogenous cholecystokinin

期刊

JOURNAL OF COMPARATIVE NEUROLOGY
卷 465, 期 4, 页码 467-479

出版社

WILEY
DOI: 10.1002/cne.10840

关键词

rostral ventrolateral medulla; periaqueductal grey; juxtacellular labelling; phenylethanolamine-N-methyl-transferase; gastrointestinal blood flow

向作者/读者索取更多资源

Systemic administration of the gastrointestinal hormone cholecystokinin (CCK) selectively inhibits splanchnic sympathetic vasomotor discharge and differentially affects presympathetic vasomotor neurons of the rostroventrolateral medulla (RVLM). Stimulation of the sympathoexcitatory region of the periaqueductal grey (PAG) produces profound mesenteric vasoconstriction. In this study, our aim was to identify phenotypically different populations of RVLM presympathetic vasomotor neurons using juxtacellular neuronal labelling and immunohistochemical detection of the adrenergic neuronal marker phenylethanolamine-N-methyl transferase (PNMT) and to determine whether the PAG provides functional excitatory input to these neurons. Fifty-eight percent (36/62) of RVLM presympathetic neurons were inhibited by systemic administration of CCK. These cells had conduction velocities (3.6 +/- 0.2 m/sec) in the non-C-fiber range consistent with neurons possessing lightly myelinated spinal axons. Of these, 79% (22/28) were excited by PAG stimulation, and 59% (10/17) were not immunoreactive for PNMT. Conversely, 42% (26/62) of RVLM presympathetic neurons were either unaffected or activated by CCK administration and had slower conduction velocities (1.4 +/- 0.3 m/sec) than cells inhibited by CCK. Fifty percent (11/22) of these cells were driven by PAG stimulation, and most (11/14 or 79%) were PNMT-positive. These results suggest that cardiovascular responses elicited by PAG stimulation occur via activation of non-Cl and Cl RVLM presympathetic neurons. RVLM neurons inhibited by CCK were more likely to be driven by PAG stimulation and may be a subset of neurons responsible for driving gastrointestinal sympathetic vasomotor tone. CCK-induced inhibition of a subpopulation of RVLM presympathetic neurons may be implicated in postprandial hyperemia and postprandial hypotension. J. Comp. Neurol. 465:467-479, 2003. (C) 2003 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据