4.6 Article

Characterization of 7-nm-thick strained Ge-on-insulator layer fabricated by Ge-condensation technique

期刊

APPLIED PHYSICS LETTERS
卷 83, 期 17, 页码 3516-3518

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1622442

关键词

-

向作者/读者索取更多资源

A strained Ge-on-insulator (GOI) structure with a 7-nm-thick Ge layer was fabricated for applications to high-speed transistors. The GOI layer was formed by thermal oxidation of a strained SiGe layer grown epitaxially on a silicon-on-insulator (SOI) wafer. In transmission electron microscopy measurements, the obtained GOI layer exhibited a single-crystal structure with the identical orientation to an original SOI substrate and a smooth Ge/SiO2 interface. The rms of the surface roughness of the GOI layer was evaluated to be 0.4 nm by atomic force microscopy. The residual Si fraction in the GOI layer was estimated to be lower than the detection limit of Raman spectroscopy of 0.5% and also than the electron energy loss spectroscope measurements of 3%. It was found that the obtained GOI layer was compressively strained with a strain of 1.1%, which was estimated by the Raman spectroscopy. Judging from the observed crystal quality and the strain value, this technique is promising for fabrication of high-mobility strained Ge channel of high-performance GOI metal-insulator-semiconductor (MIS) transistors. (C) 2003 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据