4.6 Article

Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/nme.810

关键词

singular integral; integral equation method; higher order basis; electromagnetic scattering

向作者/读者索取更多资源

A numerical solution of integral equations typically requires calculation of integrals with singular kernels. The integration of singular terms can be considered either by purely numerical techniques, e.g. Duffy's method, polar co-ordinate transformation, or by singularity extraction. In the latter method the extracted singular integral is calculated in closed form and the remaining integral is calculated numerically. This method has been well established for linear and constant shape functions. In this paper we extend the method for polynomial shape functions of arbitrary order. We present recursive formulas by which we can extract any number of terms from the singular kernel defined by the fundamental solution of the Helmholtz equation, or its gradient, and integrate the extracted terms times a polynomial shape function in closed form over plane triangles or tetrahedra. The presented formulas generalize the singularity extraction technique for surface and volume integral equation methods with high-order basis functions. Numerical experiments show that the developed method leads to a more accurate and robust integration scheme, and in many cases also a faster method than, for example, Duffy's transformation. Copyright (C) 2003 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据