4.8 Article

Brain-derived neurotrophic factor-dependent unmasking of silent synapses in the developing mouse barrel cortex

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2131948100

关键词

-

向作者/读者索取更多资源

Brain-derived neurotrophic factor (BDNF) is a critical modulator of central synaptic functions such as long-term potentiation in the hippocampal and visual cortex. Little is known, however, about its role in the development of excitatory glutamatergic synapses in vivo. We investigated the development of N-methyl-D-aspartate (NMDA) receptor (NMDAR)-only synapses (silent synapses) and found that silent synapses were prominent in acute thalamocortical brain slices from BDNF knockout mice even after the critical period. These synapses could be partially converted to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-containing ones by adding back BDNF alone to the slice or fully converted to together with electric stimulation without affecting NMDAR transmission. Electric stimulation alone was ineffective under the BDNF knockout background. Postsynaptically applied TrkB kinase inhibitor or calcium-chelating reagent blocked this conversion. Furthermore, the AMPAR C-terminal peptides essential for interaction with PDZ proteins postsynaptically prevented the unmasking of silent synapses. These results suggest that endogenous BDNF and neuronal activity synergistically activate AMPAR trafficking into synaptic sites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据