4.8 Article

Fast protein folding kinetics

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1735417100

关键词

-

资金

  1. NIGMS NIH HHS [GM 34993, R01 GM034993] Funding Source: Medline

向作者/读者索取更多资源

Proteins are complex molecules, yet their folding kinetics is often fast (microseconds) and simple, involving only a single exponential function of time (called two-state kinetics). The main model for two-state kinetics has been transition-state theory, where an energy barrier defines a slow step to reach an improbable structure. But how can barriers explain fast processes, such as folding? We study a simple model with rigorous kinetics that explains the high speed instead as a result of the microscopic parallelization of folding trajectories. The single exponential results from a separation of timescales; the parallelization of routes is high at the start of folding and low thereafter. The ensemble of rate-limiting chain conformations is different from in transition-state theory; it is broad, overlaps with the denatured state, is not aligned along a single reaction coordinate, and involves well populated, rather than improbable, structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据